
NOTATION 

Uis the longitudinal component of the mean velocity; u I is the longitudinal component 
of the velocity fluctuations; M is the size of the grating cell; d is the diameter of the 
grating rods, Re~ is the turbulent Reynolds number; El(f) is the energy of the longitudinal 
velocity fluctuations; e I is dissipation of the longitudinal velocity fluctuations; ~ is the 
kinematic viscosity; x I is the longitudinal coordinate; fs is the sampling frequency, and fc 
is the cutoff frequency. 
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INFLUENCE OF PARTICLES ON THE INITIAL STAGE OF 

HOMOGENEOUS TURBULENCE DEGENERATION 

L. I. Zaichik and V. A. Pershukov UDC 532.529 

The influence of particles on the degeneration of homogeneous turbulence at high 
Reynolds numbers is analyzed. 

On the basis of the solution of a system of equations for two-point moments of gas and 
particle velocity fluctuations without taking account of the triple correlations, the in- 
fluence of the disperse phase on the final stage of homogeneous isotropic turbulence degenera- 
tion is investigated in [i] for moderate Reynolds numbers; it is obtained here that the 
presence of particles magnifies the damping of the turbulent fluctuations. It is noted in 
[2] that particles in a jet result in two oppositely directed effects: on one hand, a reduc- 
tion in the fluctuation intensity of the lifting stream velocity occurs because of additional 
turbulent energy dissipation, and on the other, growth of turbulent energy generation occurs 
because of the increase in the average gas velocity gradient. Attenuation of the turbulent 
fluctuation intensity is established for near-wall flows in [3, 4] because of the additional 
dissipation in the presence of coarse particles in the stream, and conversely, a rise in the 
fluctuation intensity because of additional turbulence generation due to the average flow in 
the case of fine particles present in the stream. Therefore, depending on the inertia charac- 
terized by the ratio between the relaxation time to the time scale of the turbulence, the 
particles can contribute to both laminarization and turbulization of the stream. Such a 
regularity of the particle influence on turbulence is inherent to different kinds of flows. 
The nature of the particle influence on the turbulent fluctuation intensity is illustrated 
in this paper in an example of the problem of homogeneous turbulence degeneration for high 
Reynolds numbers. 

The flow of a gas stream with solid particles (P2 >> i) for a moderate volume concentra- 
tion of the disperse phase (~<<i) is considered. The equations of motion for the gas and 
particles are written in a Stokes approximation in the form 
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i. Change in turbulent energy (a) and dissipation (b) 
in time: i) a = 0.01; 2) 0.i; 3) i; 4) I0. 
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The equations for the second one-point moments of the lifting phase velocity fluctua- 
tions <U~u[> without taking account of the particle concentration fluctuations in conformity 
with (1)• the form 
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The particle influence on the turbulent stress is described by the last component in (3). 
The mixed correlation moment of the solid and gas phase velocity fluctuations in this com- 
ponent is expressed in terms of the second moment of the gas phase velocity fluctuations by 
using the relationship 

I 
�9 , 1 , , 

( vilii> = ~ .I F (s) exp ( - -s /x)  ds ( uda] > , 
T 

0 

(4) 

obtained from (2). Here F(s)= <ui(t)uj(t + s)>/<u;(t)u~(t)> is the two-time correlation func- 

tion of the gas stream velocity fluctuations. As in [3, 4], we approximate F(s) by a step 
function 

F ( s ~ = t J  f~r O ~ s ~ T ,  (5) 
~o for S ~ T, 

where T is the time integral turbulence scale determining the life time of the energetic 
moles. Taking (5) into account, (4) takes the form 

( ~,~r / t l - -exp(- -1 /e) ]  (u;~u) >, (6)  

wh~ze ~ = ~/T i s  a p a r a m e t e r  c h a r a a t e f ~ i z } n g  th 'e  p a r t 2 r  i n e r t i a  :from t h e  v i e w p o i n t  o f  t h e i r  
involvement in the lifting stream f~uet, ua~fng motion, 

The equation for the scalar dirSs!ip~tion of the fluctllNtion energy e ~ v(Oul/Oxh~ 

is obtained from (i) 
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The particle influence on fluctuation energy dissipation is determined by the last two 
terms in (7), where only the first of them turns out to be essential at high Reynolds num- 
bers. Analogously to (4), an expression is obtained for the mixed correlation moment between 
the derivatives of the solid and gas phase velocities 

/ Or; OU; \ 1 ~F~(s) exp - -  ds~  ~ Oxh / '  (8) 
\ Oxh Oxk / ~  ~" ., "~ 
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where 

au~ (t) ou~ (t + s ) / ~ / / a u ;  (t) ou; (0 \ 
F~(s) = ~ v~c~ Oxh \ Oxh Oxk / 

is the autocorrelation function of the derivative of the gas stream velocity fluctuations. 
The time interval in which damping of the function Fe(S) occurs in contrast to F(s) is not 
determined by the macroscale T but by the microscale. For high Reynolds numbers the relation- 
ships T/T~eU2 holds. Analogously to (5) we approximate Fe(s) by a step function by re- 
placing the quantity T by T e. Then (8) takes the form 

/ 8v~ Ou~ \ [ 1 - - e x p (  o~ ) l l  Ou[ Ou; \ (9 )  
\ Oxh 8xh / ~  ----~,. \ ~ Oxh I '  

where a = Te/T is a parameter characterizing the ratio between the micro and macroscales. 

In the case of homogeneous turbulence at high Reynolds numbers (3) and (7) simplify 
substantially. Let us write the equations for turbulent energy and turbulent energy dis- 
sipation in dimensionless form with (6) and (9) taken into account 

de _~ 2 exp (-- 1/Q) �9 - 

d7 
~2 2 exp (--al~) �9 - 

- . -  = - -2  ~ e. 
dt e Q 

(1o) 

(11) 

Only terms taking account of viscous dissipation and additional dlg~ip@tion due to inter- 
phasal fluctuating slip remain in the right sides of (I0) and (Ii). In the absend& of par- 
ticles (~ = 0) known relationships for the damping of turbulence at high Reynolds numbers 
[5, 6] follow from (i0) and (ii) 

i.e. 

~ - - ( 1 + ~ - ~ ,  ~ = ( 1 - ] - R  -z. (12)  

Let us find the solution of (i0) and (ii) for fixed values of the parameters ~ and a, 
by setting ~ = Y/T0, ~ = Te0/T 0. In this case the solution of (i0) and (ii) will be 
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Fig. 2. Influence of particle inertia 
on the turbulent energy: i) ~ = O; 2) 
0.05; 3) 0.i; 4) 0.5; 5) i. 
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Graphs of the change in turbulent energy and viscous dissipation, constructed by means 
of (13) and (14) for relatively moderate values of E (when the analysis performable is indeed 
valid) are presented in Fig. i. The solution (12) for a single-phase medium is shown by 
dashes while the solid lines correspond to the values ~ = 1 and = = 0.i. It is seen that the 
presence of sufficiently inert particles (~>~I) results in more rapid degeneration of the 
turbulence while the presence of fine particles (~ << i) causes a diminution in the damping 
rate of the fluctuation energy. The particles influence on viscous dissipation results in 
the opposite effects. 

The influence of particle inertia on the ratio between the turbulent energy for ~ = 1 
and the corresponding quantity for ~ = 0 for E = 1 is shown in Fig. 2. It is clear to see 
that as ~ grows the turbulizing influence of the particles is replaced by a laminatizing 
effect. As the parameter ~ increases, the laminatizing action of the particles is expressed 
all the more clearly while the turbulizing effect is lowered for small ~. In the limit cases 

+ 0 (with the exception of ~ = 0) and ~ + ~) the particle influence on turbulence vanishes. 

The lowering of the turbulent energy upon the introduction of particles into the flow is 
explained by the additional dissipation because of the interphasal fluctuation slip described 
by the second term in the right side of (i0). The maximam influence on e is observed for 

= i, hwere, as is seen from Fig. 2, which corresponds to the maximum of the expression 
exp(-i/~)/~. The turbulizing action of fine particles is explained by the fact that the maxi- 
mum of their action on r is found for ~ = =, as follows from (Ii), consequently, a diminution 
in the viscous dissipation r results in a stronger effect of the influence of particles on 
$ than the appearance of the additional interphasal dissipation. From the physical viewpoint, 
this is related to the circumstance that fine particles cause, without interacting with ener- 
getic fluctuation, suppression of the high-frequency part of the spectrum responsible for 
turbulent energy dissipation. Therefore, on the whole the nature of particle influence on 
degeneration of homogeneous turbulence turns out to be the same as in the near-wall flows 
although the turbulization upon the introduction of fine particles is not due to additional 
generation of turbulence but to diminution of viscous dissipation because of interphasal 
fluctuation slip. 

NOTATION 

u i, U i, v i, V i are the actual and averaged gas and solid phase velocities; Pa, P2 are 
the gas and particle densities; P is the pressure; v is the kinematic viscosity coefficient; 
% @=92~/91 is the volume and weight concentrations of the solid phase T = 2p2r2/9pzv is the 

I! relaxation time of particles of radius r; e = <UkUk>/2 is the turbulent energy; Re = e2/ev 
is the Reynolds number; t = tr e = e/e0; r = g/r 0. The subscript 0 denotes initial 
time. 
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CONCENTRATION FIELD OF PARTICLES EJECTED INTO A NONHOMOGENEOUS 

ATMOSPHERE BY A MOVING SOURCE 

V. P. Kabashnikov UDC 533.6:551.510 

We obtain and analyze analytical expressions describing the space-time evolu- 
tion of the density of solid particles ejected into the atmosphere. 

Solid or liquid particles ejected as combustion products from aircraft engines are one 
of the important factors of man's influence on the earth's atmosphere [i]. In solid-fueled 
engines up to 1/3 of the weight of the exhaust is made up of metal-oxide particles whose 
typical size is of the orders of a few microns [2, 3]. The purpose of the present paper is 
to study theoretically the space-time structure of the exhaust trail of particles produced 
by a moving aircraft. 

In the dense layers of the atmosphere the particles are carried along completely by the 
gaseous components of the exhaust and the distribution of particles is therefore similar to 
the concentration distributions of the gas components. However it is known that the velocity 
relaxation length (i.e., the distance the particle falls during the velocity relaxation time) 
in the important case of large knudsen number is inversely proportional to the density of 
the medium [4, 5], whereas the transverse size of the exhaust, gas jet is inversely propor- 
tional to the square root of the density [6]. Therefore at a certain altitude of flight the 
size of the cloud of particles begins to exceed the transverse dimensions of the region oc- 
cupied by the gas components of the exhaust. In the first approximation, for altitudes great- 
er than this critical height one can assume that the distribution of particles in the exhaust 
trail is formed as a result of ejection of particles into a nonmoving atmosphere from a moving 
point source, which corresponds to the near-nozzle flow region determining the initial veloc- 
ity of the particles. 

Then the equation of motion for the distribution function f of particles of a given size 
is: 

~ +v  o_$ + Tv ((g + a)f ) :  o. 
Ot 

(1) 

The drag force on a particle in the medium is assumed to be proportional to its velocity: 

a = - - ~ - v ,  ( 2 )  

where the dependence of the reciprocal of the relaxation time on height is approximated as 
an exponential: 

= y(x3) : y ( ~ e x p ( - - x 3 H - ~ ) ,  (3) 
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